
EIGENVALUES, EXPANDERS AND SUPERCONCENTRATORS 
(Extended Abstract) 

Noga Alon* 7 - V. D. Milman** 

*M.I.T. Cambridge, Massachusetts 02139 
A T & T  Bell Laboratories, Murray Hill, N J  07974 

**Department of Mathematics, Tel Aviv University, Tel Aviv, Israel 

ABSTRACT 

Explicit construction of families of linear expanders 
and superconcentrators is relevant to theoretical computer 
science in several ways. There is essentially only one 
known explicit construction. Here we show a 
correspondence between the eigenvalues of the adjacency 
matrix of a graph and its expansion properties, and 
combine it with results on Group Representations to 
obtain many new examples of families of linear expanders. 
We also obtain better expanders than those previously 
known and use them to construct explicitly 
n-superconcentrators with = 157.4 n edges, much less 
than the previous most economical construction. 

1. INTRODUCTION 

A graph G is called (n ,  a ,  p)-expanding, where 
0 < a < (3 < n, if it is a bipartite graph on the sets of 
vertices Z(inputs) and O(outputs), where 111 = 101 = n ,  
and every set of a t  least a inputs is joined by edges to a t  
least (3 different outputs. An ( n ,  k ,  d)-expander is a 
graph with < k . n edges which is 
(n, a, a(l  + d ( l  - a/n)))-expanding for all a ,< n/2. A 
family of linear expanders of density k and expansion d IS 

a set { C , ) , ~ = , ,  where G, is an hi, k ,  d)-expander, n, -* 03 

and n,+,/n, - 1 as i --t w. 

Such a family is the main component in the recent 
parallel sorting network of Ajtai, Koml6s and SzemerBdi2. 
It also forms the basic building block used in the 
construction of graphs with special connectivity properties 
and small number of edges (see, e.g., Chung4). An 
example of a graph of this type is an n-superconcentrator 
(s.c.), which is a directed acyclic graph with n inputs and 
n outputs such that for every 1 6 r 6 n and every two 
sets A of r inputs and B of r outputs there are r vertex 
disjoint paths from the vertices of A to the vertices of B .  
A family of linear s.c.-s of density k is a set {G,},=l, 
where G, is an n-s.c. with < ( k  + o(1))  n edges. 
Superconcentrators, which are the subject of an extensive 
literature, are relevant to computer science in several 
ways. They have been used in the construction of graphs 
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that are hard to pebble (see Lengauer and Tarjan', 
PippengerI4 and Paul, Tarjan and Celonii5), in the study 
of lower bounds (see Valiant*') and in the establishment 
of time space tradeoffs for computing various functions 
(Abelson', Ja'Ja6 and Tompa 1 9 ) .  

It is not too difficult to prove the existence of a family 
of linear expanders (and hence a family of linear s.c.-s> 
using probabilistic arguments, (see, e.g. Chung4, Pinsker'* 
and P i ~ p e n g e r ' ~ ) .  However, for applications an explicit 
construction is desirable. Such a construction is much 
more difficult and there is essentially only one known 
example, due to Margulis" (Angluin3 and Gaber and 
Galil' gave slight modifications). Margulis gave an 
explicit family of linear expanders of density 5 and used 
several deep results from the theory of Group 
Representations to prove that it has expansion d for some 
d > 0. However, he was not able to bound d strictly 
away from 0. Gaber and Gali15 modified Margulis' 
construction and were able to obtain, using Fourier 
Analysis, a family of linear expanders of density 7 and 
expansion (2-&)/2. They used this family to construct 
explicitly a family of linear s.c.-s of density =271.8. 

Here we first show, in Section 2, a relation similar to 
the one shown by Tanner", between the eigenvalues of 
the adjacency matrix of a graph and its expansion 
properties. This suggests an efficient algorithm to prove 
that a given graph is an expander. 

Combining this relation with results of Kazhdan on 
Group Representations, we obtain, in Section 3, many new 
examples of families of linear expanders. Our examples 
are related to the only known one given in [lo], but our 
method is more general since it supplies an infinite 
number of examples. Roughly speaking, the graphs in 
our families are double covers of Cayley graphs of 
homomorphic images of lattices in certain Lie groups. 
More details appear in Section 3 .  

We conclude this summary in Section 4, where we 
combine our methods with those of Gaber and Galil to 
obtain a better family of linear expanders than the one 
given in [51. Our expanders enable us to construct 
explicitly a family of linear s.c.-s of density -157.4. This 
improves the previous results of Gaber and Galil and 
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Chung, who gave explicit families of s.c.-s of densities 
~ 2 7 1 . 8  and 1261.5 ,  respectively. We also construct a 
family of linear non acyclic s.c.-s of density 2.64, much 
better than the construction of ShamirI7. 

We would like to thank D. Kazhdan for many fruitful 
discussions. 

2. EIGENVALUES, ENLARGERS AND EXPANDERS 

The adjacency matrix A ,  = ( u ~ , , ) ~  E v , ~  E v of a graph 
G = ( V , E )  is a 0-1 matrix where auv = 1 iff uv E E .  
Put QG = diag(p(v)),,,v - AG, where p(v) is the degree 
of the vertex v E V ,  and let X,(C) be the second smallest 
eigenvalue of Q,. One can show that Xl(G)  > 0 with 
equality iff G is not connected. An (n, k ,  d-enlarger is a 
k-regular graph G on n vertices with Xl(G) E. The 
(extended) double cover of  a graph G = ( V ,  E )  where 
V = (vl ,  v2, ..., v,) is a bipartite graph H on the sets of 
inputs X = { x ! ,  ..., x,) and outputs Y = {yl, ..., y,) in 
which x, E X and y ,  E Y are adjacent iff i = J  or 
V;V,  E E .  

The following theorem is our basic tool for 
constructing linear expanders. 

Theorem 2.1 

The double cover of an (n, k ,  t)-enlarger is an 
( n ,  k + 1, d)-expander, where d = 4J(k + 2d .  

The proof uses elementary linear algebra (Courant- 
Fisher Inequality). We omit the details. Note that there 
are several efficient algorithms to compute eigenvalues 
(see, e.g., [161), and thus one can check efficiently if a 
graph is an (n, k ,  6)-enlarger. In contrast, there is no 
known efficient algorithm to decide if a given graph is an 
(n, k ,  d)-expander. 

3. GROUP REPRESENTATIONS AND CAYLEY GRAPHS 

Let H be a finite group with a generating set 6 
satisfying 6 = 6-', 1 # 6. The Cayley graph G = G(H,6)  
is a graph on the vertex set H in which U and v are 
adjacent iff u = s v  for some s E 6. Clearly G is 161 
regular. Combining Theorem 2.1 with results of 
Kazhdan' on property ( T )  we can show that double 
covers of certain families of Cayley graphs form families 
of linear expanders. To save space, we give only one 
infinite class of such families. For n 2 3, let S L ( n , Z )  
denote the group of all n x n matrices over the integers 
Z with determinant 1 .  In [111 an explicit set B, of two 
generators of S L ( n ,  Z )  is given. Put S, = B, U BL' ,  
(IS,( = 4). Let S L h ,  Zi) be the group of all n x n 
matrices over the ring of integers modulo i with 
determinant 1 ,  and let q5Y):SL (n, 2)  + SL ( n ,  Z i )  be 
the group homomorphism defined by 
4!")((ars>) = (a,(mod i l l .  
Theorem 3.1 

For every fixed n > 3 there is an E > 0 such that for 
every i 2 2 the Cayley graph Gi(") = G ( S L ( n ,  Zi) ,  

C#I?) 6,)) is an ( ISL(n,  Z,)1,4, d-enlarger. Thus the 
family ( H l ( n ) ) E l ,  where H,(") is the double cover of Cl(") 
is a family of linear expanders of density 5. 0 

To prove Theorem 3.1 we use the fact, proved in [71, 
that the lattice S L h ,  2) of the Lie Group S L ( n ,  R) has 
property ( T )  (see [71 for the definition), provided n 2 3. 
One can check that the adjacency matrix of the Cayley 
graph GI(") is 2 II o &l(n) (s), where n is the left 

s ES" 
regular representation of SL(n, 2,). These two facts, 
together with elementary linear algebra, imply the desired 
assertion. We omit the details. 

It is worth noting that we can obtain similarly, an 
infinite number of families of linear expanders of 
density 3. We can also show that double covers of 
families of Cayley graphs of commutative groups cannot 
yield families of linear expanders. This is related to some 
of the results of Klawe,' that imply the last assertion for 
cyclic groups. 

4. BETTER EXPANDERSANDSUPERCONCENTRATORS 

Let n = m 2  and let A, be 
(0, 1, ..., m-1)  x (0, I ,  ..., m - I ) .  Define the following 7 
permutations on A, .  

Let G, denote the bipartite graph with classes or 
vertices X = A, ,  Y = A,, where ( x ,  y )  E X is joined to 
ai ( x ,  y )  E Y for 0 < i < 6.  

Gaber and Galil' proved that G, is an (n, 7, d i ) -  
expander, where d i  = (2 - &)I2 = 0 .  I39 .... They used 
these expanders to construct a family of linear s.c.-s of 
density ~ 2 7 1 . 8 .  

Let H,  denote the bipartite graph with classes of 
vetices X = A,, Y = A, ,  where ( x ,  y )  E X is joined to 
a i ( x , y )  E Y for 0 < i < 6 and to a ; ' ( x , y )  E Y for 
l , < i < 6 .  

Combining Lemma 4 of 151 with the basic idea of the 
proof of Theorem 2.1 here, we can show that H,  is an 
(n, 1 3 ,  c)-expander, where 

= 0.465 .... (Actually we get 

a slightly stronger result, but we omit it to avoid too 
complicated statements.) The main difference between our 
proof and the one given in 151 is that our method supplies 

a lower bound to 1 ( U a; ( A )  U a,:' (a))\A 1, for A C X ,  

which is the actual quantity we are interested in, whereas 
the method of [51 estimates 5: [vi (A)\A 1, and uses this 

to bound I U ai(A)\AI. 

8dO c =  
2di  + 1 + ,/= 

i = l  

6 

6 i = l  

i = l  
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Our expanders supply easily a family of linear s.c.-s of 
density 175. One can further reduce the density using the 
idea of Appendix 1 of [51 to 1157.4 ,  as computed by 
Z. Galil. This improves the previous best known result, 
due to Chung (-261.5). 

Shamir” constructed a family of nonacyclic directed 
s.c.-s of density -204 and of undirected s.c.-s of density 
~ 1 1 8 .  Our expanders enable us to improve these bounds 
to 2 6 4  and =37, repsectively. 
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